1,672 research outputs found

    Estimating true evolutionary distances under the DCJ model

    Get PDF
    Motivation: Modern techniques can yield the ordering and strandedness of genes on each chromosome of a genome; such data already exists for hundreds of organisms. The evolutionary mechanisms through which the set of the genes of an organism is altered and reordered are of great interest to systematists, evolutionary biologists, comparative genomicists and biomedical researchers. Perhaps the most basic concept in this area is that of evolutionary distance between two genomes: under a given model of genomic evolution, how many events most likely took place to account for the difference between the two genomes

    Answering Conjunctive Queries under Updates

    Full text link
    We consider the task of enumerating and counting answers to kk-ary conjunctive queries against relational databases that may be updated by inserting or deleting tuples. We exhibit a new notion of q-hierarchical conjunctive queries and show that these can be maintained efficiently in the following sense. During a linear time preprocessing phase, we can build a data structure that enables constant delay enumeration of the query results; and when the database is updated, we can update the data structure and restart the enumeration phase within constant time. For the special case of self-join free conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical, then query enumeration with sublinear∗^\ast delay and sublinear update time (and arbitrary preprocessing time) is impossible. For answering Boolean conjunctive queries and for the more general problem of counting the number of solutions of k-ary queries we obtain complete dichotomies: if the query's homomorphic core is q-hierarchical, then size of the the query result can be computed in linear time and maintained with constant update time. Otherwise, the size of the query result cannot be maintained with sublinear update time. All our lower bounds rely on the OMv-conjecture, a conjecture on the hardness of online matrix-vector multiplication that has recently emerged in the field of fine-grained complexity to characterise the hardness of dynamic problems. The lower bound for the counting problem additionally relies on the orthogonal vectors conjecture, which in turn is implied by the strong exponential time hypothesis. ∗)^\ast) By sublinear we mean O(n1−Δ)O(n^{1-\varepsilon}) for some Δ>0\varepsilon>0, where nn is the size of the active domain of the current database

    Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability

    Get PDF
    Transcranial random noise stimulation (tRNS) is a recent neuromodulation protocol. The high-frequency band (hf-tRNS) has shown to be the most effective in enhancing neural excitability. The frequency band of hf-tRNS typically spans from 100 to 640 Hz. Here we asked whether both the lower and the higher half of the high-frequency band are needed for increasing neural excitability. Three frequency ranges (100\u2013400 Hz, 400\u2013700 Hz, 100\u2013700 Hz) and Sham conditions were delivered for 10 minutes at an intensity of 1.5 mA over the primary motor cortex (M1). Single-pulse transcranial magnetic stimulation (TMS) was delivered over the same area at baseline, 0, 10, 20, 30, 45 and 60 minutes after stimulation, while motor evoked potentials (MEPs) were recorded to evaluate changes in cortical excitability. Only the full-band condition (100\u2013700 Hz) was able to modulate excitability by enhancing MEPs at 10 and 20 minutes after stimulation: neither the higher nor the lower sub-range of the high-frequency band significantly modulated cortical excitability. These results show that the efficacy of tRNS is strictly related to the width of the selected frequency range

    Promocijas darbs

    Get PDF
    Elektroniskā versija nesatur pielikumu

    In vitro pathogenicity of Northern Peru native bacteria on Phyllocnistis citrella Stainton (Gracillariidae: Phyllocnistinae), on predator insects (Hippodamia convergens and Chrysoperla externa), on Citrus aurantiifolia Swingle and white rats

    Get PDF
    citrella after 48 h (74.1% average mortality). Serratia sp. caused the highest mortality after 24 h in H. convergens (40%) and C. externa (30%), whereas the Lowest mortality rates were induced at 72 h by E. aerogenes on C. externa (3%) and by Pseudomonas sp. on H. convergens (10%). The bacteria did not affect neither C. aurantiifolia or the rats, which gained the same weight as control animals

    Coprological study on intestinal helminths in Swiss dogs: temporal aspects of anthelminthic treatment

    Get PDF
    Coproscopic examination of 505 dogs originating from the western or central part of Switzerland revealed the presence (prevalence data) of the following helminthes: Toxocara canis (7.1%), hookworms (6.9%), Trichuris vulpis (5.5%), Toxascaris leonina (1.3%), Taeniidae (1.3%), Capillaria spp. (0.8%), and Diphyllobothrium latum (0.4%). Potential risk factors for infection were identified by a questionnaire: dogs from rural areas significantly more often had hookworms and taeniid eggs in their feces when compared to urban family dogs. Access to small rodents, offal, and carrion was identified as risk factor for hookworm and Taeniidae, while feeding of fresh and uncooked meat did not result in higher prevalences for these helminths. A group of 111 dogs was treated every 3months with a combined medication of pyrantel embonate, praziquantel, and febantel, and fecal samples were collected for coproscopy in monthly intervals. Despite treatment, the yearly incidence of T. canis was 32%, while hookworms, T. vulpis, Capillaria spp., and Taeniidae reached incidences ranging from 11 to 22%. Fifty-seven percent of the 111 dogs had helminth eggs in their feces at least once during the 1-year study period. This finding implicates that an infection risk with potential zoonotic pathogens cannot be ruled out for the dog owner despite regular deworming four times a yea

    Enhancement of the Binding Energy of Charged Excitons in Disordered Quantum Wires

    Full text link
    Negatively and positively charged excitons are identified in the spatially-resolved photoluminescence spectra of quantum wires. We demonstrate that charged excitons are weakly localized in disordered quantum wires. As a consequence, the enhancement of the "binding energy" of a charged exciton is caused, for a significant part, by the recoil energy transferred to the remaining charged carrier during its radiative recombination. We discover that the Coulomb correlation energy is not the sole origin of the "binding energy", in contrast to charged excitons confined in quantum dots.Comment: 4 Fig

    Applicability of the photogrammetry technique to determine the volume and the bulk density of small soil aggregates

    Get PDF
    Aggregate density (Âż) is defined as the relationship between the mass and the volume occupied by an aggregate. Previous studies have characterised Âż on large to medium-sized soil aggregates (>4mm diameter); however, little information is available for smaller aggregates (0.99, P<0.0001) between the volumes estimated on rough stones with the PHM and Archimedes methods demonstrates that this technique can be satisfactorily used to estimate the volume and, consequently, the Âż of small soil aggregates. The results showed an increase in Âż with decreasing aggregate size. A general trend of increasing Âż with the degree of soil disturbance by tillage was also observed

    Simultaneous Orthogonal Planarity

    Full text link
    We introduce and study the OrthoSEFE−k\textit{OrthoSEFE}-k problem: Given kk planar graphs each with maximum degree 4 and the same vertex set, do they admit an OrthoSEFE, that is, is there an assignment of the vertices to grid points and of the edges to paths on the grid such that the same edges in distinct graphs are assigned the same path and such that the assignment induces a planar orthogonal drawing of each of the kk graphs? We show that the problem is NP-complete for k≄3k \geq 3 even if the shared graph is a Hamiltonian cycle and has sunflower intersection and for k≄2k \geq 2 even if the shared graph consists of a cycle and of isolated vertices. Whereas the problem is polynomial-time solvable for k=2k=2 when the union graph has maximum degree five and the shared graph is biconnected. Further, when the shared graph is biconnected and has sunflower intersection, we show that every positive instance has an OrthoSEFE with at most three bends per edge.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    • 

    corecore